The 2008 Wells Earthquake Sequence

Utah and Nevada Earthquake Safety Council(s) Joint Meeting

Wells, Nevada May 20, 2008

By: Seismic Network Staffs of UNR and Utah and the USGS Golden Operations Group

Wells Earthquake

Wells Earthquake

Regional Seismic Network With EarthScope USArray

Regional Network Operations 2006-2008

USArray Current Configuration

²⁰⁰⁹ Apr 7 09:55:23 PGA NSHMP 2008. Red lines are Qfaults. Site Vs30 760 m/s. 2% in 50 yr PE. UCERF fault models.

Slide from Chris Henry NBMG

Aftershock Sequence Response

Aftershock Sequence Response

Aftershock Sequence Response

Portable Instrument Deployment

University of Utah USGS UNR

Enormous Support from the Local Community

Local Real-Time Communications for Portable Seismic Stations

Real-time Seismic Monitoring

Seismic Station

Microwave Comm Site

Figure Nathan Edwards

(0)

Antelope

St. Louis University/USGS Moment Tensor Solution 2008/02/21 14:16:05 41.076 -114.771 10.0 6.0 Nevada Best Fitting Double Couple Mo = 8.32e+24 dyne-cm Mw = 5.88<u>Z....=</u> 11 km Plane Strike Dip Rake NP1 205 50 -90 NP2 25 -90 40 Principal Axes: Value Axis Plunge Azimuth Т 8.32e+24 295 5 Ν 0.00e+00 -0 205 P.__8.32e+24 85 115

Moment Tenso	r: (dyne-cm)
Component	Value
MXX	1.46e+24
MXX	-3.14e+24
Mxz	6.10e+23
Myy	6.73e+24
Myz	-1.31e+24
Mzz	-8.19e+24

Mainshock Moment Tensor Solution SLU

	****	*****	****			444	
¥.	****	*****	*##			-###	
444	****	ннни				###	¥
44.						###	
т нн.		н.					888
н тн	пппп						нана
******	****	,				**	****
****	₽₽₽₽						#####
****	4444						****
****	444-			₽			****
******	-444						****
ннннн	ын					-нннн	нннн
#######	₽₽					,,,,,,,,	,,,,, ,
****	¥¥				·#	****	444
1 1 1 1 1	¥¥					****	4 H
	 				- 11111		 Н
							·
P	PPP				*****	P P P P	
-	₽₽₽₽			####	*****	444	
	₽·		#I	*****	****		
		##1	****	*****	ι μ		

Earthquakes in TCF February 2007 through 2008 Mainshock

Wells Foreshock Activity Began Almost Exactly One Year Before the Mw 6.0 Mainshock

114"30"0"W

114'0'0'W

Perspective View Looking NE Along Mainshock Fault Plane

Depth (km)

Figure 7 (Ponce et al., 2009). Geophysically defined lineaments and structures possibly associated with the February 21, 2008 Wells Mw 6 earthquake.

InSAR Image: John Bell NBMG

Wells Source Estimates

Radius of Fault Rupture from Aftershock Relocations: 4 km Approximately Radial Rupture

Source	Mo (dyne-cm)	Mw	Slip (cm)	Stress Drop (bars)
USGS	1.24e+25	6.00	83	86
St. Louis	8.31e+24	5.88	55	56
UC Berkeley	1.05e+25	5.95	70	72

 $Stress Drop = \frac{7}{16} \frac{Mo}{r^3}$ $slip = \frac{Mo}{\mu A}$

Mo = seismic moment, r = source radius, A = fault area, u = rigidity

Speculation on Development of Town Creek Flats Basin

Assume: Extension began around 9 Ma (Henry et al., Wells Volume) Depth of TCF ~1.75 km (Ponce et al., Wells Volume) Elevation of Snake Mtn. to NW 0.25 km Total subsidence of TCF 2 km relative to Snake Mtns.

Average TCF basin subsidence in 2008 Wells event, **10 cm** (2/3 of InSAR estimates from Wells earthquake)

Requires 20,000 Wells earthquakes since 9 Ma to account for 2 km of subsidence

Return Period of Wells Events: 450 yrs

Mw Equivalent: 8.9

Number of Mw 7.0 Earthquakes: 632 events

Return Period of Mw 7.0: 14 Ka

Vertical Slip Rate: 0.2 mm/yr, consistent with the Ruby Mountains FZ

Implications: Formation of local basins without surface faulting required

A Special 'Thanks' to the Town of Wells and the Local Community